These days, checking the headlines over morning coffee is as much about figuring out if we should be hunkering down in the basement preparing for imminent nuclear annihilation as it is about keeping up with the day’s headlines. Unfortunately, even the most diligent newshounds may find it difficult to distinguish the signal from the noise, which is why NBC launched its NBC Politics Bot on Facebook Messenger shortly before the U.S. presidential election in 2016.
Develop intelligent, enterprise-grade bots that let you maintain control of your data. Build any type of bot—from a Q&A bot to your own branded virtual assistant. Use a comprehensive, open-source SDK and tools to easily connect your bot across popular channels and devices. Give your bot the ability to speak, listen, and understand your users with native integration of Azure Cognitive Services.
Several studies accomplished by analytics agencies such as Juniper or Gartner [34] report significant reduction of cost of customer services, leading to billions of dollars of economy in the next 10 years. Gartner predicts an integration by 2020 of chatbots in at least 85% of all client's applications to customer service. Juniper's study announces an impressive amount of $8 billion retained annually by 2022 due to the use of chatbots.
These are just the basic versions of intelligent chatbots. There are many more intelligent chatbots out there which provide a much more smarter approach to responding to queries. Since the process of making a intelligent chatbot is not a big task, most of us can achieve it with the most basic technical knowledge. Many of which will be very extremely helpful in the service industry and also help provide a better customer experience.
The term "ChatterBot" was originally coined by Michael Mauldin (creator of the first Verbot, Julia) in 1994 to describe these conversational programs.[2] Today, most chatbots are accessed via virtual assistants such as Google Assistant and Amazon Alexa, via messaging apps such as Facebook Messenger or WeChat, or via individual organizations' apps and websites.[3][4] Chatbots can be classified into usage categories such as conversational commerce (e-commerce via chat), analytics, communication, customer support, design, developer tools, education, entertainment, finance, food, games, health, HR, marketing, news, personal, productivity, shopping, social, sports, travel and utilities.[5]
The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[51] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform Yekaliva[47][28] and IBM Watson.[52][53][54] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
What began as a televised ad campaign eventually became a fully interactive chatbot developed for PG Tips’ parent company, Unilever (which also happens to own an alarming number of the most commonly known household brands) by London-based agency Ubisend, which specializes in developing bespoke chatbot applications for brands. The aim of the bot was to not only raise brand awareness for PG Tips tea, but also to raise funds for Red Nose Day through the 1 Million Laughs campaign.

AI-driven automation in each of these areas can streamline how enterprises train, manage, and work with seasonal, temporary, part-time, and full-time employees. However, it is important to consider the challenges surrounding information security, legal boundaries, extensibility, and audit logging when making the decision to get started using bots for HR.
The term chat bot (or sometimes just bot) can also be used in the meaning of an automatic chat responder program. The article How to Create a Chat Bot for Yahoo Messenger written by Chelsea Hoffman, explains how quick and easy it is to create a Chat bot responder containing unique and accurate responses to general phrases, words and questions that are used in Yahoo messenger.
Although NBC Politics Bot was a little rudimentary in terms of its interactions, this particular application of chatbot technology could well become a lot more popular in the coming years – particularly as audiences struggle to keep up with the enormous volume of news content being published every day. The bot also helped NBC determine what content most resonated with users, which the network will use to further tailor and refine its content to users in the future.
Chatbots are predicted to be progressively present in businesses and will automate tasks that do not require skill-based talents. Companies are getting smarter with touchpoints and customer service now comes in the form of instant messenger, as well as phone calls. IBM recently predicted that 85% of customer service enquiries will be handled by AI as early as 2020.[62] The call centre workers may be particularly at risk from AI.[63]
“Major shifts on large platforms should be seen as an opportunities for distribution. That said, we need to be careful not to judge the very early prototypes too harshly as the platforms are far from complete. I believe Facebook’s recent launch is the beginning of a new application platform for micro application experiences. The fundamental idea is that customers will interact with just enough UI, whether conversational and/or widgets, to be delighted by a service/brand with immediate access to a rich profile and without the complexities of installing a native app, all fueled by mature advertising products. It’s potentially a massive opportunity.” — Aaron Batalion, Partner at Lightspeed Venture Partners
×