The word robot is derived from the Czech noun robota meaning “labor”, and is an accomplishment of the cubist painter and writer Josef Capek, older brother of novelist and playwright Karel Capek. The word robot first appeared in 1920 in the Karel Capek’s play “RUR” (“Rossum’s Universal Robots”) and since then this play popularized the word invented by playwright’s brother.[3]

However, the revelations didn’t stop there. The researchers also learned that the bots had become remarkably sophisticated negotiators in a short period of time, with one bot even attempting to mislead a researcher by demonstrating interest in a particular item so it could gain crucial negotiating leverage at a later stage by willingly “sacrificing” the item in which it had feigned interest, indicating a remarkable level of premeditation and strategic “thinking.”

One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. uses a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.

The first formal instantiation of a Turing Test for machine intelligence is a Loebner Prize and has been organized since 1991. In a typical setup, there are three areas: the computer area with typically 3-5 computers, each running a stand-alone version (i.e. not connected with the internet) of the participating chatbot, an area for the human judges, typically four persons, and another area for the ‘confederates’, typically 3-5 voluntary humans, dependent on the number of chatbot participants. The human judges, working on their own terminal separated from one another, engage in a conversation with a human or a computer through the terminal, not knowing whether they are connected to a computer or a human. Then, they simply start to interact. The organizing committee requires that conversations are restricted to a single topic. The task for the human judges is to recognize chatbot responses and distinguish them from conversations with humans. If the judges cannot reliably distinguish the chatbot from the human, the chatbot is said to have passed the test.
Despite all efforts during almost half a century, most chatbots are still easily uncovered, but over the next decades they will definitely get smarter and finally we will distinguish human beings by them giving us silly answers as opposed to the much smarter chatbots. All of this will really start accelerating as soon as one single chatbot is smarter than one single human being. They will then be able to learn from each other, instead of learning from human beings, their knowledge will explode and they will be able to design even better learning mechanisms. In the long run, we will learn language from chatbots instead of the other way around.
Nowadays a high majority of high-tech banking organizations are looking for integration of automated AI-based solutions such as chatbots in their customer service in order to provide faster and cheaper assistance to their clients becoming increasingly technodexterous. In particularly, chatbots can efficiently conduct a dialogue, usually substituting other communication tools such as email, phone, or SMS. In banking area their major application is related to quick customer service answering common requests, and transactional support.
The “stand-alone” application, where the chatbot runs on a single computer, integrates mostly some sort of system interface, allowing your chatbot to control certain aspects and functions of your computer, such as playing media files, or retrieving documents. It usually also has a graphical component built in, as well, in the form of an avatar (often female) that enhances interaction, thus improving user’s experience.
The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[51] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform Yekaliva[47][28] and IBM Watson.[52][53][54] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
According to Richard Wallace, chatbots development faced three phases over the past 60 years. In the beginning, chatbot only simulated human-human conversations, using canned responses based on keywords, and it had almost no intelligence. Second phase of development was strictly associated with the expansion of Internet, thanks to which a chatbot was widely accessed and chatted with thousands of users. Then, the first commercial chatbot developers appeared. The third wave of chatbots development is combined with advanced technologies such as natural language processing, speech synthesis and real-time rendering videos. It comprises of chatbot appearing within web pages, instant messaging, and virtual worlds.
Jabberwacky learns new responses and context based on real-time user interactions, rather than being driven from a static database. Some more recent chatbots also combine real-time learning with evolutionary algorithms that optimise their ability to communicate based on each conversation held. Still, there is currently no general purpose conversational artificial intelligence, and some software developers focus on the practical aspect, information retrieval.
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.
Since the steep rise of available hardware and software platforms lately, nowadays chatbots are available everywhere. Originally, they were very tight to computers, then exchangeable through tapes, discs and floppy discs, but since the Internet era they have been widespread. For example ancient chatbot Eliza is now also available on iPhone, while famous chatbot A.L.I.C.E. is available on Facebook.
Pop-culture references to Skynet and a forthcoming “war against the machines” are perhaps a little too common in articles about AI (including this one and Larry’s post about Google’s RankBrain tech), but they do raise somewhat uncomfortable questions about the unexpected side of developing increasingly sophisticated AI constructs – including seemingly harmless chatbots.
Other companies explore ways they can use chatbots internally, for example for Customer Support, Human Resources, or even in Internet-of-Things (IoT) projects., for one, has reportedly launched a chatbot named Mila to automate certain simple yet time-consuming processes when requesting for a sick leave.[31] Other large companies such as Lloyds Banking Group, Royal Bank of Scotland, Renault and Citroën are now using automated online assistants instead of call centres with humans to provide a first point of contact. A SaaS chatbot business ecosystem has been steadily growing since the F8 Conference when Facebook's Mark Zuckerberg unveiled that Messenger would allow chatbots into the app.[32] In large companies, like in hospitals and aviation organizations, IT architects are designing reference architectures for Intelligent Chatbots that are used to unlock and share knowledge and experience in the organization more efficiently, and reduce the errors in answers from expert service desks significantly.[33] These Intelligent Chatbots make use of all kinds of artificial intelligence like image moderation and natural language understanding (NLU), natural language generation (NLG), machine learning and deep learning.
A malicious use of bots is the coordination and operation of an automated attack on networked computers, such as a denial-of-service attack by a botnet. Internet bots can also be used to commit click fraud and more recently have seen usage around MMORPG games as computer game bots.[citation needed] A spambot is an internet bot that attempts to spam large amounts of content on the Internet, usually adding advertising links. More than 94.2% of websites have experienced a bot attack.[2]

“Major shifts on large platforms should be seen as an opportunities for distribution. That said, we need to be careful not to judge the very early prototypes too harshly as the platforms are far from complete. I believe Facebook’s recent launch is the beginning of a new application platform for micro application experiences. The fundamental idea is that customers will interact with just enough UI, whether conversational and/or widgets, to be delighted by a service/brand with immediate access to a rich profile and without the complexities of installing a native app, all fueled by mature advertising products. It’s potentially a massive opportunity.” — Aaron Batalion, Partner at Lightspeed Venture Partners