In one particularly striking example of how this rather limited bot has made a major impact, U-Report sent a poll to users in Liberia about whether teachers were coercing students into sex in exchange for better grades. Approximately 86% of the 13,000 Liberian children U-Report polled responded that their teachers were engaged in this despicable practice, which resulted in a collaborative project between UNICEF and Liberia’s Minister of Education to put an end to it.
These days, checking the headlines over morning coffee is as much about figuring out if we should be hunkering down in the basement preparing for imminent nuclear annihilation as it is about keeping up with the day’s headlines. Unfortunately, even the most diligent newshounds may find it difficult to distinguish the signal from the noise, which is why NBC launched its NBC Politics Bot on Facebook Messenger shortly before the U.S. presidential election in 2016.

These are just the basic versions of intelligent chatbots. There are many more intelligent chatbots out there which provide a much more smarter approach to responding to queries. Since the process of making a intelligent chatbot is not a big task, most of us can achieve it with the most basic technical knowledge. Many of which will be very extremely helpful in the service industry and also help provide a better customer experience.
Chatbots could be used as weapons on the social networks such as Twitter or Facebook. An entity or individuals could design create a countless number of chatbots to harass people. They could even try to track how successful their harassment is by using machine-learning-based methods to sharpen their strategies and counteract harassment detection tools.
Other companies explore ways they can use chatbots internally, for example for Customer Support, Human Resources, or even in Internet-of-Things (IoT) projects. Overstock.com, for one, has reportedly launched a chatbot named Mila to automate certain simple yet time-consuming processes when requesting for a sick leave.[31] Other large companies such as Lloyds Banking Group, Royal Bank of Scotland, Renault and Citroën are now using automated online assistants instead of call centres with humans to provide a first point of contact. A SaaS chatbot business ecosystem has been steadily growing since the F8 Conference when Facebook's Mark Zuckerberg unveiled that Messenger would allow chatbots into the app.[32] In large companies, like in hospitals and aviation organizations, IT architects are designing reference architectures for Intelligent Chatbots that are used to unlock and share knowledge and experience in the organization more efficiently, and reduce the errors in answers from expert service desks significantly.[33] These Intelligent Chatbots make use of all kinds of artificial intelligence like image moderation and natural language understanding (NLU), natural language generation (NLG), machine learning and deep learning.
Other companies explore ways they can use chatbots internally, for example for Customer Support, Human Resources, or even in Internet-of-Things (IoT) projects. Overstock.com, for one, has reportedly launched a chatbot named Mila to automate certain simple yet time-consuming processes when requesting for a sick leave.[31] Other large companies such as Lloyds Banking Group, Royal Bank of Scotland, Renault and Citroën are now using automated online assistants instead of call centres with humans to provide a first point of contact. A SaaS chatbot business ecosystem has been steadily growing since the F8 Conference when Facebook's Mark Zuckerberg unveiled that Messenger would allow chatbots into the app.[32] In large companies, like in hospitals and aviation organizations, IT architects are designing reference architectures for Intelligent Chatbots that are used to unlock and share knowledge and experience in the organization more efficiently, and reduce the errors in answers from expert service desks significantly.[33] These Intelligent Chatbots make use of all kinds of artificial intelligence like image moderation and natural language understanding (NLU), natural language generation (NLG), machine learning and deep learning.
“There is hope that consumers will be keen on experimenting with bots to make things happen for them. It used to be like that in the mobile app world 4+ years ago. When somebody told you back then… ‘I have built an app for X’… You most likely would give it a try. Now, nobody does this. It is probably too late to build an app company as an indie developer. But with bots… consumers’ attention spans are hopefully going to be wide open/receptive again!” — Niko Bonatsos, Managing Director at General Catalyst
×