These are just the basic versions of intelligent chatbots. There are many more intelligent chatbots out there which provide a much more smarter approach to responding to queries. Since the process of making a intelligent chatbot is not a big task, most of us can achieve it with the most basic technical knowledge. Many of which will be very extremely helpful in the service industry and also help provide a better customer experience.
Using Spinbot you can instantly spin (or rewrite) a chunk of textual content up to 10,000 characters in length (or about 1000 words), which is much longer than an average website or freely-distributed article. With a single click you can turn your old blog post or website article into a completely new one, thereby doubling the payoff you get in return for the time and energy you have already invested into creating quality website content. Spinbot is lightning fast as well as free, so there is potentially no limit to the amount of free web content that you can create using this tool.
This chatbot is one the best AI chatbots and it’s my favorite too. Evidently it is the current winner of Loebner Prize. The Loebner Prize is an annual competition in artificial intelligence that awards prizes to the chatterbot considered by the judges to be the most human-like. The format of the competition is that of a standard Turing test. You can talk with Mitsuku for hours without getting bored. It replies to your question in the most humane way and understands your mood with the language you’re using.
The most widely used anti-bot technique is the use of CAPTCHA, which is a form of Turing test used to distinguish between a human user and a less-sophisticated AI-powered bot, by the use of graphically-encoded human-readable text. Examples of providers include Recaptcha, and commercial companies such as Minteye, Solve Media, and NuCaptcha. Captchas, however, are not foolproof in preventing bots as they can often be circumvented by computer character recognition, security holes, and even by outsourcing captcha solving to cheap laborers.
The word bot, in Internet sense, is a short form of robot and originates from XX century. The modern use of the word bot has curious affinities with earlier uses, e.g. “parasitical worm or maggot” (1520s), of unknown origin; and Australian-New Zealand slang “worthless, troublesome person” (World War I -era). The method of minting new slang by clipping the heads off respectable words does not seem to be old or widespread in English. Examples: za from pizza, zels from pretzels, rents from parents, are American English student or teen slang and seem to date back no further than late 1960s.[3]
The first formal instantiation of a Turing Test for machine intelligence is a Loebner Prize and has been organized since 1991. In a typical setup, there are three areas: the computer area with typically 3-5 computers, each running a stand-alone version (i.e. not connected with the internet) of the participating chatbot, an area for the human judges, typically four persons, and another area for the ‘confederates’, typically 3-5 voluntary humans, dependent on the number of chatbot participants. The human judges, working on their own terminal separated from one another, engage in a conversation with a human or a computer through the terminal, not knowing whether they are connected to a computer or a human. Then, they simply start to interact. The organizing committee requires that conversations are restricted to a single topic. The task for the human judges is to recognize chatbot responses and distinguish them from conversations with humans. If the judges cannot reliably distinguish the chatbot from the human, the chatbot is said to have passed the test.
Social networking bots are sets of algorithms that take on the duties of repetitive sets of instructions in order to establish a service or connection among social networking users. Various designs of networking bots vary from chat bots, algorithms designed to converse with a human user, to social bots, algorithms designed to mimic human behaviors to converse with behavioral patterns similar to that of a human user. The history of social botting can be traced back to Alan Turing in the 1950s and his vision of designing sets of instructional code that passes the Turing test. From 1964 to 1966, ELIZA, a natural language processing computer program created by Joseph Weizenbaum, is an early indicator of artificial intelligence algorithms that inspired computer programmers to design tasked programs that can match behavior patterns to their sets of instruction. As a result, natural language processing has become an influencing factor to the development of artificial intelligence and social bots as innovative technological advancements are made alongside the progression of the mass spreading of information and thought on social media websites.

Interface designers have come to appreciate that humans' readiness to interpret computer output as genuinely conversational—even when it is actually based on rather simple pattern-matching—can be exploited for useful purposes. Most people prefer to engage with programs that are human-like, and this gives chatbot-style techniques a potentially useful role in interactive systems that need to elicit information from users, as long as that information is relatively straightforward and falls into predictable categories. Thus, for example, online help systems can usefully employ chatbot techniques to identify the area of help that users require, potentially providing a "friendlier" interface than a more formal search or menu system. This sort of usage holds the prospect of moving chatbot technology from Weizenbaum's "shelf ... reserved for curios" to that marked "genuinely useful computational methods".
If a text-sending algorithm can pass itself off as a human instead of a chatbot, its message would be more credible. Therefore, human-seeming chatbots with well-crafted online identities could start scattering fake news that seem plausible, for instance making false claims during a presidential election. With enough chatbots, it might be even possible to achieve artificial social proof.[58][59]
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 

AIML, Artificial Intelligence Markup Language developed by Richard Wallace, constitutes an open standard for creating your own chat bot. AIML file consists of row-type, database-style data combined with hierarchical XML data in each response. This video shows one of spreadsheet-style editors for AIML, Simple AIML Editor (SAE) developed by Adeena Mignogna. The SAE allows botmasters to manage large AIML sets and then zoom in on the templates to edit the responses.
Chatbots could be used as weapons on the social networks such as Twitter or Facebook. An entity or individuals could design create a countless number of chatbots to harass people. They could even try to track how successful their harassment is by using machine-learning-based methods to sharpen their strategies and counteract harassment detection tools.
However, web based bots are not as easy to set up as a stand-alone chatbot application. Setting up a web-based chatbot requires at least minimal experience with HTML, JavaScript and Artificial Intelligence Markup Language (AIML). Additionally, any sort of “fancy” features, such as Text To Speech, or an animated avatar, would have to be created and integrated into your chatbot’s page, and certain features, such as voice recognition, are either unavailable, or are severely limited.

Chatbots – also known as “conversational agents” – are software applications that mimic written or spoken human speech for the purposes of simulating a conversation or interaction with a real person. There are two primary ways chatbots are offered to visitors: via web-based applications or standalone apps. Today, chatbots are used most commonly in the customer service space, assuming roles traditionally performed by living, breathing human beings such as Tier-1 support operatives and customer satisfaction reps.


Previous generations of chatbots were present on company websites, e.g. Ask Jenn from Alaska Airlines which debuted in 2008[27] or Expedia's virtual customer service agent which launched in 2011.[27][28] The newer generation of chatbots includes IBM Watson-powered "Rocky", introduced in February 2017 by the New York City-based e-commerce company Rare Carat to provide information to prospective diamond buyers.[29][30]
×