Reports of political interferences in recent elections, including the 2016 US and 2017 UK general elections,[3] have set the notion of botting being more prevalent because of the ethics that is challenged between the bot’s design and the bot’s designer. According to Emilio Ferrara, a computer scientist from the University of Southern California reporting on Communications of the ACM,[4] the lack of resources available to implement fact-checking and information verification results in the large volumes of false reports and claims made on these bots in social media platforms. In the case of Twitter, most of these bots are programmed with searching filter capabilities that target key words and phrases that reflect in favor and against political agendas and retweet them. While the attention of bots is programmed to spread unverified information throughout the social media platform,[5] it is a challenge that programmers face in the wake of a hostile political climate. Binary functions are designated to the programs and using an Application Program interface embedded in the social media website executes the functions tasked. The Bot Effect is what Ferrera reports as when the socialization of bots and human users creates a vulnerability to the leaking of personal information and polarizing influences outside the ethics of the bot’s code. According to Guillory Kramer in his study, he observes the behavior of emotionally volatile users and the impact the bots have on the users, altering the perception of reality.
The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[51] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform Yekaliva[47][28] and IBM Watson.[52][53][54] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
Love them or hate them, chatbots are here to stay. Chatbots have become extraordinarily popular in recent years largely due to dramatic advancements in machine learning and other underlying technologies such as natural language processing. Today’s chatbots are smarter, more responsive, and more useful – and we’re likely to see even more of them in the coming years.
What began as a televised ad campaign eventually became a fully interactive chatbot developed for PG Tips’ parent company, Unilever (which also happens to own an alarming number of the most commonly known household brands) by London-based agency Ubisend, which specializes in developing bespoke chatbot applications for brands. The aim of the bot was to not only raise brand awareness for PG Tips tea, but also to raise funds for Red Nose Day through the 1 Million Laughs campaign.
ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of clue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY').[9] Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
What began as a televised ad campaign eventually became a fully interactive chatbot developed for PG Tips’ parent company, Unilever (which also happens to own an alarming number of the most commonly known household brands) by London-based agency Ubisend, which specializes in developing bespoke chatbot applications for brands. The aim of the bot was to not only raise brand awareness for PG Tips tea, but also to raise funds for Red Nose Day through the 1 Million Laughs campaign.
A representative example of a chat bot is A.L.I.C.E., brought to artificial life in 1995 by Richard Wallace. The A.L.I.C.E. bot participated in numerous competitions related to natural language processing evaluation and obtained many honors and awards, and it is also worth mentioning that this chat bot won the Loebner Prize contest at least three times, it was also part of the top 10 at Chatterbox competition, and won the best character/personality chat bot contest.
In a particularly alarming example of unexpected consequences, the bots soon began to devise their own language – in a sense. After being online for a short time, researchers discovered that their bots had begun to deviate significantly from pre-programmed conversational pathways and were responding to users (and each other) in an increasingly strange way, ultimately creating their own language without any human input.

Please check out our main directory with 1376 live chatbot examples (an overview as maintained by developers themselves), our vendor listing with 256 chatbot companies and chatbot news section with already more than 370 articles! Our research tab contains lots of papers on chatbots, 1,166 journals on chatbots and 390 books on chatbots. This research section also shows which universities are active in the chatbot field, indicates which publishers are publishing journals on humanlike conversational AI and informs about academic events on chatbots. Also, check out our dedicated tab for awards, contest and games related to the chatbot field, various forums like our AI forum by chatbot enthusiasts and add any chatbot as created by yourself and your colleagues to our chatbot directory. Please do not forget to register to join us in these exciting times.

The most widely used anti-bot technique is the use of CAPTCHA, which is a form of Turing test used to distinguish between a human user and a less-sophisticated AI-powered bot, by the use of graphically-encoded human-readable text. Examples of providers include Recaptcha, and commercial companies such as Minteye, Solve Media, and NuCaptcha. Captchas, however, are not foolproof in preventing bots as they can often be circumvented by computer character recognition, security holes, and even by outsourcing captcha solving to cheap laborers.
[In] artificial intelligence ... machines are made to behave in wondrous ways, often sufficient to dazzle even the most experienced observer. But once a particular program is unmasked, once its inner workings are explained ... its magic crumbles away; it stands revealed as a mere collection of procedures ... The observer says to himself "I could have written that". With that thought he moves the program in question from the shelf marked "intelligent", to that reserved for curios ... The object of this paper is to cause just such a re-evaluation of the program about to be "explained". Few programs ever needed it more.[8]
×